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Abstract

With the development of Internet of Things (IoT), there have been more and more services and ap-
plications deployed in physical spaces and information systems. The massive number of sensors and
devices are embedded in IoT environments, which produce huge amounts of data continuously for
the IoT systems and platforms. Processing these data stream generated by the IoT networks with dif-
ferent patterns has raised new challenges for the real-time performance of intrusion detection system
(IDS) in IoT environments, which has to react quickly to the hacking attacks and malicious activi-
ties to IoT. In this paper, a complex event processing (CEP) based IDS model for object detection
tracking and intrusion detection in the IoT environments is proposed. Esper, an open source complex
event processing engine is used to develop the model. In this model, the cincoming streams of data
are detected by Esper engine according to the predefined EPL rules. And then, trigger correspond-
ing listeners, the normal events are sent to the higher layer application as an new event through the
adapter. In the alert event processor, the abnormal events are divided into the attack events and the
other causes of abnormal events, such as sensor fault, transmission delay, etc.
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1 Introduction

The Internet of Things (IoT) provides connectivity for anyone at any time and place to anything at any
time and place. IoT devices are poised to become more pervasive in our lives than mobile phones and will
have access to the most sensitive personal data such as social security numbers and banking information.
As the number of connected IoT devices constantly increase, security concerns are also exponentially
multiplied.

IDS aims to monitor system or network activities of malicious activities based on predefined poli-
cies and produce alerts and reports to administrators. For different security threats in IoT systems or
platforms, effective IDS technology needs to be simple, real-time and accurately detected. IDS based
on multi-agents make use of agents’ autonomy, mobility, and independent logic processing capability
[8]. Multi-agent IDS system consists of detection agent, host agent and network agent. IDS agents work
at perceptive layer and communicate to each other collaboratively, which greatly reduce network load
and time delay. Host agent on network terminals will manage detection agents, which is responsible
for listening security events. Filtered data of host agent will be submitted to network agent and finally
transmitted to the console. Compared with other IDS technology such as game theory model, Bayesian
network and machine learning, multi-agent IDS performs better in real-time efficiency aspect (process-
ing capability, concurrent and maximum TCP per second). IDS based on game theory model, Bayesian
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network, and machine learning needs to operate events on certain computation models, thus, they are rel-
atively weak in real-time performance [10]. However, these kinds of IDS have better system robustness
and lower network failure rate, since their centralized deployment mode.

Different from the computation distribution concept of multi-agent IDS, 6LoWPAN technology has
been studied as a new way to provide IP identity and network connectivity to IDS of the perceptive layer
of IoT, which is tiny, inexpensive and low-powered. [9] has implemented a novel intrusion detection
system based on 6LoWPAN for the IoT in the Contiki OS detecting routing attacks such as spoofed or
altered information and sinkhole, which supports more effective data transmission and quick response to
malicious activities with limited energy and memory capacity. Event processing architecture has been
used as another tool to solve the problem of events streams in IoT. [11] have designed and implemented
IDS using information flow processing (IFP) [4] to extract event from multiple and distributed sources as
soon as relevant information arrived, which promptly detect possible attacks with real-time actions and
alerts. [5] takes advantages of collaborative mechanisms to enhance the efficiency of event processing
workflow on the single node and has implemented an IDS for IoT platform Semantic Room which
achieved high detection accuracy and small detection delays in security threats (e.g. port scans, botnets)
and frauds [7].

In this paper, we propose a Complex Event Processing (CEP) [3] based solution for object tracking
and intrusion detection system model in IoT environments. Complex Event Processing (CEP) technology
provides new solutions in the field of complex pattern identifications and real-time data processing, which
can be used to improve the performance of traditional IDS in IoT environments. This IDS model will
real-time monitoring and tracking each layer event streams according to the predefined EPL rules in IoT
environments. Rest of the paper is organized as follows: Section 2 introduces the layered structure of
IoT and the complex event processing (CEP). Section 3 explains the proposed model and Section 4 has
the conclusion.

2 Related Work

2.1 A Layered IoT System

The research and applications of Internet of Things (IoT) are attracting more and more attentions and
the security issues have become increasing prominent. Figure 1 shows a common layered structure of an
IoT.

1. Perception Layer: The perception layer is also known as ‘Device Layer’. It consists of the physical
objects and sensor devices. The sensors can be RFID, 2D-barcode, or Infrared sensor depending
upon objects identification method. This layer basically deals with the identification and collection
of objects specific information by the sensor devices. Depending on the type of sensors, the infor-
mation can be about location, temperature, orientation, motion, vibration, acceleration, humidity,
chemical changes in the air etc. the collected information is then passed to Network layer for its
secure transmission to the information processing system.

2. Network Layer: The network layer can also be called ‘Transmission Layer’. This layer securely
transfers the information from sensor devices to the information processing system. The transmis-
sion medium can be wired or wireless and technology can be 3G, UMTS, Wifi, Bluetooth, infrared,
ZigBee, etc depending upon the sensor devices. Thus, the Network layer transfers the information
from Perception layer to Middleware layer.

3. Middleware Layer: The devices over the IoT implement the different type of services. Each device
connects and communicates with only those other devices which implement the same service type.
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Figure 1: The Structure of An IoT

This layer is responsible for the service management and has a link to the database. It receives the
information from Network layer and store in the database. It performs information processing and
ubiquitous computation and takes an automatic decision based on the results.

4. Application Layer: This layer provides global management of the application based on the objects
information processed in the Middleware layer. The applications implemented by IoT can be smart
health, smart farming, smart home, smart city, intelligent transportation, etc.

5. Business Layer: This layer is responsible for the management of overall IoT system including the
applications and services. It builds business models. Graphs, flowcharts etc based on the data
received from Application layer. The real success of the IoT technology also depends on the good
business models. Based on the analysis of results, this layer will help to determine the future
actions and business strategies.

2.2 Complex Event Processing

Complex Event Processing (CEP) is an emerging technology to filter and process events in real-time sce-
narios. The basic information processed in CEP is defined as events and any phenomenon happened in
physical spaces can be modeled as an event. CEP allows users to specify the events according to their own
interest, such as transmission events in wireless sensor network or operating events in enterprise applica-
tions. Events have various relationships among them and complex events usually consist of multiple sim-
ple events. CEP technology can be used to detect meaningful complex relationships among events and
respond to them as quickly as possible in real-time data, which makes it easier to identify event streaming
with temporal and spatial constraints (e.g. ‘‘A then B within 5 minutes within 10 miles’’).
To some extent, CEP is a set of tools, practices, and techniques used to drive external information ap-
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plications and systems [1]. CEP engine works a bit like a database turned upside-down which stores
quires constraints and runs the data through. Thus, CEP has the advantages as follows: high throughput
(information rate from 1k to 100k), Low latency (ranging from a few milliseconds to a few seconds) and
complex pattern identifications (event relationships, event aggregations, and time or length windows,
etc.). Typical examples of CEP applications are business process tools, finance management, network
monitoring and sensor network automation [6].

Vertical causality: tracking events up and down the layers. Activity at each layer is translated into
activities at the layers below and conversely. Those lower-level activities must complete successfully in
order for the higher-level activities to also complete successfully. However, an activity at the top causes
activities at successively lower levels, which in turn cause other activities to happen at the top. We call
this vertical causality.

Event aggregation: making high-level sense out of low-level events. Event aggregation will in turn
depend upon technology for recognizing patterns of events in large amounts of lower-level event traffic,
in real time. And it depends first on an ability to express patterns consisting of multiple events together
with their common data and timing. If event aggregation is implemented properly, it can give us the
ability to track the lower-level events that were aggregated to create a high-level event [2].

Esper is an open-source Java-based software product for CEP and Event Stream Processing (ESP)
that analyzes series of events for deriving conclusions from them. Esper provides a rich Event Processing
Language (EPL) to express filtering, aggregation, and joins, possibly over sliding windows of multiple
event series. It also includes pattern semantics to express complex temporal causality among events
(followed-by relationship). Esper provides a highly scalable, memory-efficient, in-memory computing,
SQL-standard, minimal latency, real-time streaming-capable Big Data processing engine for any-velocity
online and real-time arriving data and high-variety data, as well as for historical event analysis. In this
paper, we use esper to develop the IDS model.

3 New IDS Model in IoT

In this section, we propose object tracking and intrusion detection system model based on CEP in the
IoT environments, and then introduce this model in detail. Figure 2 shows this model.

Event. An event is an object that is a record of an activity in a system. The event signifies the activity.
An event may be related to other events. There are particular attributes or data in the event. For example,
a temperature sensor event attributes are as follows:

Event{

EventId;

ObjectId;

SensorId;

Data;

TimePro;

Location;

......;

}
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Figure 2: Proposed IDS Model in IoT

Every event has EventId is a unique identifier field. ObjectId shows sensor’s type, is temperature
in here. SensorId is sensor id. Data is the value of the sensor. TimePro means the time of this event
produced. Location is the sensor position.

Esper Engine. Esper engine is the CEP engine. The incoming streams of data are processed by this
engine according to the predefined rules (EPLs). In this IDS model the step involved in event processor
are as follows:

Step 1: Initialization and launch the esper engine, and define the types of event attributes.
Step 2: Generate EPL rules. Run the queries (EPLs) continuously on the event streams as and when

they arrive.
Step 3: The events are sent to the esper engine. Real-time detection events through EPL rules and

then trigger corresponding listeners.
Step 4: Through the adapter, the normal events are sent to the higher layer application as an event.

The abnormal events send to the alert event processor.
Step 5: Distinguish between the attack events and the other causes of abnormal events.
Following JAVA code snippet is used for getting an Engine instance.

EPServiceProvider esperEngine = EPServiceProviderManager. getDefaultProvider();

EPAdministrator admin = esperEngine.getEPAdministrator();

EPRuntime runtime = esperEngine.getEPRuntime();

String sensorEvent = sensorEventType.class.getName();

The input to the CEP engine is the event streams. sensorEvent has defined the name of the event
stream. In esper engine, we can also input multiple event streams. sensorEventType is the JAVA class
that contains event attributes and event types. An event can be sent to the esper engine as follows:

runtime.sendEvent(event);
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The events are sent to the esper engine, and then detection the events by defining the EPL rules. In
this model, we store all the EPL rules in the database. When the esper engine startup to call corresponding
EPL rules in the EPL database. Therefore, the EPL rules are the most key component for this intrusion
detection system.

Examples of EPL rules: Consider the simple example of identifying the people who enter into some
of the privileged locations into which they are not supposed to enter. This event occurs in the perception
layer. RFID tags have a priority associated with them. People are given a RFID based on their privilege.
These event attributes are as follows:

Event{

EventId;

ObjectId;

SensorId;

Rfid;

SensorPriority;

TimePro;

Location;

......

}

The EPL rule statement of the engine as follows:

String epl = ‘‘select SensorId, Rfid, SensorPriority from sensorEvent’’;

EPStatement stat = admin.createEPL(epl);

Here SensorPriority is the location priority.
This is just a simple EPL rule statements. We can create an EPL rule statement which through

pattern matching between a pre-specified spatiotemporal pattern and the incoming data streams. The
event attributes can contain some network data, such as IP address, port, protocol, packets and so on.
Therefore, we can also create the EPL by the intrusion detection algorithm.

Esper engine provides different ways for the application to receive the results of the detections.
Through the adapter, the normal events are sent to the higher layer application as an event. The abnor-
mal events send to the alert event processor. For the abnormal event, we discretion through the EPL
statements, maybe it is an attack behavior or sensor fault. All the detection results output by the listener.
Below mentioned is the code snippet for adding a listener.

stat.addListener(new priorityListener());

The detection results trigger the different listener. The normal events trigger the listener to generate
a new event and are sent to the higher layer by the adapter. In the higher layer, this new event will be sent
to another esper engine for detection. In the process of the whole, esper will real-time tracking events.

Esper provides runtime configuration. Through a Java Management Extension (JMX) MBean, we
can remote dynamic statement management. Therefore, when adding a new sensor, changing the event
type, adding the new EPL statements or adding the new listener and so on, we don’t need to restart the
esper engine.

We need to configure esper engine according to this IDS model. We will improve the intrusion
detection system model by a large number of experimental. We will futher research detection algorithm
that can be used in the EPL rules, in order to build the more powerful esper engine.
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4 Conclusion

In this paper, we present intrusion detection system model based on complex event processing in the
IoT environments. This IDS model will real-time monitoring and tracking each layer event streams
according to the predefined EPL rules in IoT environments. Trigger corresponding listeners to process
the events. We describe the structure and process of this model in detail. The Internet of things (IoT) is
vast amounts of distributed systems. The complex event processing (CEP) will play a vital role in the
IoT environments. In the future, We will build and test this IDS model in the reality IoT environments
in order to further improve the intrusion detection system model. We believe that can use complex event
processing technology to accurately predict attack behavior in the future.
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