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Abstract

As IT technology increases, it became part of our life. Because of change in numbers, the files and
data used in IT also increased. With simple data and file, malicious codes also increased in great
number. This malicious code leads too many problems in the society. In fact, recently, new mali-
cious codes that have not been detected yet are used in attacks such as APT (Advanced Persistent
Threat). These codes became problem and lead to great damages. Thus, the speed of finding the
undefined malicious code and making countermeasures became one of the important key words of
the security. However, finding new malicious codes that is currently in action seems impossible. In
order to find the malicious codes faster, there are researches on finding the special properties of the
malicious code’s file or action pattern. Through finding the properties of the codes, detecting the
malicious codes became more effective and the results are satisfactory. This research will find the
relation of malicious code’s file property, behavior property, and property of each group or group
as a hole in order to effectively detect the code that is suspicious of being malignant effectively and
precisely. Thus, this paper will present a way to apply priority when it comes to detecting malicious
code.

Keywords: Unknown Malicious Code Detection, Advanced Persistent Threat, Malicious Code Anal-
ysis

1 Introduction

As IT became part of our life and use of IT increases, files and data that is used in the area increased.
Because of the data produced and used in IT increased greatly in number, technology of the malicious
code and number of people creating malicious codes also increased in order to get in control of the data.
According to one Security Company in Korea, three hundred thousand of malicious codes are gathered
in a month. Thus, passively detecting the codes became nearly impossible. In order to differentiate
malicious codes among the enormous amount of data in use, need of automation and efficiency brought
about active research on the area. On the other hand, malicious codes also evolve as security technology
increases. Many new technologies on malicious code are being generated in order to avoid the basic se-
curity system. Today, new malicious codes are in action consistently with out being detected by security
system. To achieve it’s malicious goals, codes use variety of mechanisms such as stealing the password
information or creating traffic in order to attack other host by using connection of command control
server [7/]. In order to counteract to the malicious codes, there are researches on technology to detect-
ing and analyzing the malicious codes. Anti-Malware Software’s basically use Negative Security Model
which is well known for Blacklist method. With Signature-based Pattern Matching False positives can
be minimized. However, pattern matching methods have limits when it comes to finding new malicious
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codes. To compensate the limits, Positive security, also called whitelist that allow only normal execution
objects to be executed. However, this is limited to POS machines or production facilities which can
define Whitelist.

Even if projects such as NSRL (National Software Reference Library) are in progress to commonly apply
the technique, it is also limited only to certain countries or restricted environment. To compensate the
limits on detecting malicious code in common host environment, there are researches going on to detect
new and unknown malicious codes. Researches such as differentiating the malicious codes by applying
behavior extraction algorithm in the process of the system function call in virtual environment system
[1O], Static detection of malicious code in executable programs [1l], and malicious code detection by
processing behavior-based detection with specific value on code’s system call frequency[4] are efforts to
detect the new and unknown malicious codes. These techniques focus on malicious codes technological
function and property that tries to achieve its main function. With the idea, approaches are based on
static or dynamic properties of the codes. However, if these detection techniques are used by themselves,
it can be bypassed by methods such as code obfuscation.

Malicious code detection is a process of classifying normal object and abnormal object. Thus, there have
been many researches to increase the accuracy of automated classification by using machine learning
algorithm or data mining. Researches such as a malware classification method based on similarity of
function structure [11]], a malware classification method based on adaptive data compaction model using
machine learning algorithm[[12]], a malware classification research by processing dynamic analysis using
automated tools that traces its execution to group the samples that show similar behavior. With the analy-
ses data, the generalized behavior profile is created to run by clustering algorithm[9], unknown malware
detection using statistical analysis of byte-level file content [6], are classified as using machine learning
algorithm or data mining. However, these researches need continuous improvement in accuracy since it
has limit due to misclassification error which occurred by using specific data and certain classification
model.

This paper classifies unknown malicious code’s file and behavior characteristics that process host in-
fection or malicious purpose to improve the preexisting researches that has limits sue to many reasons
presented in the previous sentences. Based on each and groups characteristics relation, this paper will
present a way to apply priority effectively when it comes to detecting malicious code.

2 Related Work

In this section, past researches on increasing the efficiency when detecting the malicious codes will
be presented. After presenting the studies, this section will describe the limits of the past researches.
At first, data mining methods for detection of new malicious is covered to explain how the data were
gathered. Then, learning to detect malicious executables in the wild executables is explained. To increase
the confidentiality, static analyses of executables to detect malicious pattern is processed. At last, data
mining method for detection of new malicious executables is presented.

2.1 Data mining methods for detection of new malicious

In this paper[8]], Schultz et al use several data mining techniques to distinguish between the benign and
malicious executables in Windows or MSDOS format. They have done experiments on a dataset that
consists of 1, 001 benign and 3, 265 malicious executables. These executables have 206 benign and 38
malicious samples in the portable executable (PE) file format. They have collected most of the benign
executables from Windows 98 systems. They use three different approaches to statically extract features
from executables. The first approach extracts DLL information inside PE executables. Further, the DLL
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information is extracted using three types of feature vectors: (1) the list of DLLs (30 boolean values),
(2) the list of DLL function calls (2, 229 boolean values), and (3) the number of different function calls
within each DLL (30 integer values). RIPPER — an inductive rule-learning algorithm is used on top
of every feature vector for classification. These schemes based on DLL information provide an overall
detection accuracy of 83.62%, 88.36% and 89.07% respectively. Enough details about the DLLs are not
provided, so we could not implement this scheme in our study. The second feature extraction approach
extracts strings from the executables using GNU strings program. Native Bayes classifier is used on
top of extracted strings for malware detection. This scheme provides an overall detection accuracy of
97.11%. This scheme is reported to give the best results amongst all, and we have implemented it for our
comparative study. The third feature extraction approach uses byte sequences (ngrams) using hexdump.
The authors do not explicitly specify the value of n used in their study. However, from an example
provided in the paper, we deduce it to be 2 (bigrams). The MultiNative Bayes algorithm is used for
classification. This algorithm uses voting by a collection of individual Native Bayes instances. This
scheme provides an overall detection accuracy of 96.88%. The results of their experiments reveal that
Native Bayes algorithm with strings is the most effective approach for detecting the unseen malicious
executables with reasonable processing overheads. The authors acknowledge the fact that the string
features are not robust and can be easily defeated. MultiNative Bayes with byte sequences also provides
relatively high detection accuracy; however, it has large processing and memory requirements. Byte
sequence technique was later improved by Kolter et al and is explained below.

2.2 Learning to detect malicious executables in the wild executables

Kolter et al use ngram analysis and data mining approaches to detect malicious executables in the wild.[J5]]
They use ngram analysis to extract features from 1, 971 benign and 1, 651 malicious PE files. The PE files
have been collected from machines running Windows 2000 and XP operating systems. The malicious
PE files are taken from an older version of the VX Heavens Virus Collection. The authors evaluate their
approach for two classification problems: (1) classification between the benign and malicious executa-
bles, and (2) categorization of executables as a function of their payload. The authors have categorized
only three types — mailer, backdoor and virus — due to the limited number of malware samples. Top
ngrams with the highest information gain are taken as binary features (T if present and F if absent) for
every PE file. The authors have done pilot studies to determine the size of ngrams, the size of words and
the number of top ngrams to be selected as features. A smaller dataset consisting of 561 benign and 476
malicious executables is considered in this study. They have used 4grams, one byte word and top 500
ngrams as features. Several inductive learning methods, namely instancebased learner, Native Bayes,
support vector machines, decision trees and boosted versions of instance-based learner, Native Bayes,
support vector machines and decision trees are used for classification. The same features are provided as
input to all classifiers. They report the detecting accuracy as the area under an ROC curve (AUC) which
is a more complete measure compared with the detection accuracy. AUCs show that the boosted decision
trees outperform rest of the classifiers for both classification problems.

When the analysis techniques presented in the previous researches is used by itself, it can be avoided
using Packing, code Obfuscation, or other bypassing technique. Thus, methodology to arrange and com-
bine the techniques according to its detection efficiency is necessary. In next chapter, 26 rules that detect
malicious codes behavior will be presented and described. Then, to place the rules efficiently, com-
bined Detection Method which arranges the rules by analyzing the rules according to efficiency will be
presented.
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2.3 Static analysis of executables to detect malicious patterns

Mihai et al presents a unique viewpoint on malicious code detection.[2] He regard malicious code de-
tection as an obfuscationdeobfuscation game between malicious code writers and researchers working
on malicious code detection. Malicious code writers attempt to obfuscate the malicious code to subvert
the malicious code detectors, such as antivirus software. They tested the resilience of three commercial
virus scanners against codeobfuscation attacks. The results were surprising: the three commercial virus
scanners could be subverted by very simple obfuscation transformations! They present an architecture
for detecting malicious patterns in executables that is resilient to common obfuscation transformations.
Experimental results demonstrate the efficacy of our prototype tool, SAFE (a static analyzer for executa-
bles).

2.4 Data Mining Methods for Detection of New Malicious Executables

Schultz et al presents serious security threat today is malicious executables, especially new, unseen mali-
cious executables often arriving as email attachments.[3] These new malicious executables are created at
the rate of thousands every year and pose a serious security threat. Current antivirus systems attempt to
detect these new malicious programs with heuristics generated by hand. This approach is costly and of-
tentimes ineffective. We present a data mining framework that detects new, previously unseen malicious
executables accurately and automatically. The data mining framework automatically found patterns in
our data set and used these patterns to detect a set of new malicious binaries. Comparing our detection
methods with a traditional signaturebased method, our method more than doubles the current detection
rates for new malicious executables

3 Malicious code detection rule and grouping method

In order to detect unknown malicious code, detection technology and code behavior analysis is very
important. Also, to distinguish the malicious code effectively, grouping of the detection rule by its effi-
ciency is needed. Thus, this chapter will explain the 26 rules that were set to detect the the malicious code
first. Then, hypothesis on effective arrangement of the rules will be suggested and tested its efficiency.

3.1 Malicious Code Detection Framework

This chapter will explain how and where each Rule detects malicious codes. Range can be majorly
divided in to Disk and Memory. The Rule that research used is 26. Out of total Rule, 117 detect the
malicious code in Sisk area. For 1826, the test and detection of the malicious code is executed in Ram
to detect the passive behavior of the code. The following Figure [T|demonstrates the theory. The 17 Rule
that cover Disk area and 9 Rule that cover Ram area are grouped again with standard. The result of the
grouping will be explained in detail in the next chapter.

3.2 Rule ID and Rule detection number set for malicious code detection

The rules that were set to detect the malicious code are 26. Each rule was referenced from Malware
Analysts Cookbook and DVD 2010[11]’s recipe and rules classify the code through static or dynamic
analysis. Rules are in following table. From the fact that well detecting Rule could detect normal code
required another step in the process. The process used in the experiment is Focusing Group Interview.
The professionals who participated in the Focusing Group Interview consist of personals who worked
in the field of malicious code analysis for over 5 years. Through FGI, Rule was given assessment point
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Figure 1: Malicious Code Detection Framework

to figure out the percentage of the Rule detecting the malicious code’s behavior in the system. The

calculation of Malicious Code Detection Rate is presented in the following Table|T]

Rule ID | Description Detection Rate | Group Number | Group Description
1 Sections with extremely low or 29% 1 Entropy calculation
high entropy
2 Abnormal section form detection 56% 2 Malicious/Suspicious
Scan
3 Hidden/system/readonly files de- 17% Malicious/Suspicious
tection String Packer
4 Suspicious Section name 37% 3 Signature detection
5 Suspicious IAT entries 2% Process/Thread test
(File search or control API)
6 Suspicious IAT entries 10% Patch/Hook detection
(INJECTION API)
7 Packer Detection 46% 4 Stack/Heap test
8 Execution compaction (unknown 37% File generation/dele-
packer) detection tion/modification
9 Yara Script Detection 5% 5 Registry genera-
tion/deletion/modifi-
cation
10 Process vulnerability attack at- 2% Network connection
tempt detection (HEAP SPRAY)
11 Hidden DLL 5% 6 Execution attempt
12 Hidden Thread 7% Entropy calculation
13 Hidden Services 15% Malicious/Suspicious
Scan
14 Attempt of modifying memory 7% 7 Malicious/Suspicious
of other process detection String
15 IAT hooking 2% Packer
16 Shell code API calling attempt 2% 8 Signature detection
detection
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Rule ID | Description DetectionRate | GroupNumber | Group Description
17 PE generation in system path de- 44% 9 Process/Thread test
tection Patch/Hook detection
18 Compact executable file genera- 54% Stack/Heap test
tion detection
19 Registry Create 68% 10 File generation/dele-
tion/modification
20 Suspicious IP address connection 5% 11 Registry
attempt detection generation/deletion
/modification
21 Key input information intercep- 10% 12 Network connection
tion attempt detection
22 System utility execution block- 7%
ing
23 Execution in suspicious path de- 39%
tection
24 Batch file execution attempt de- 10%
tection

Table 1: Grouping Result

4 Efficiency measurement in malicious code detection rule

The total number of Unknown Malicious code samples is 37. These codes were randomly collected from
malicious that were spread in commercial area from 2013 to 2014. Each sample was applied with the
Rules used to detect malicious codes. Each sample is used to calculate the malicious code detection
efficiency. This research concentrates on malicious code detection efficiency. Malicious code detection
efficiency shows how accurately and rapidly the Rule can detect the malicious code. The reason is that
in order to process the detection more effectively in thousands of files, Group that can detect malicious
code faster has to be positioned in the front. This will allow detection time to be shortened.

4.1 Calculation of malicious code detection efficiency generated from detection rule com-
bination

4.1.1 Combination of each rule according to detection efficiency

When the rules with high malicious code detection rate were send to front and top 2 15 rules were
combined to apply on 41 samples to see how many malicious codes it can detect in Table 2]

Combination number 2 3 475 679 10714 15
Detection number(n) 34 37 38 39 40 41
Detection rate(n/41) | 82.9% | 90.2% | 92.7% | 95.1% | 97.6% | 100%

Table 2: Detection efficiency of malicious code according to rule combination
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4.1.2 Combination based on group detection efficiency

From the analyzed malicious code detection number per Rule, each groups average malicious code de-
tection rate were calculated and apply higher weight on the group with higher malicious code detection
number. Results are in Table 31

Group Number Description FGI Score | Group Detection Rate
Gl Entropy calculation 7.0 32%
G2 Malicious/Suspicious Scan 4.0 84%
G3 Malicious/Suspicious String 3.3 51%
G4 Packer 35 62%
G5 Signature detection 7.0 8%
G6 Process/Thread test 6.0 30%
G7 Patch/Hook detection 6.0 8%
G8 Stack/Heap test 6.0 3%
G9 File generation/deletion/modification 1.0 92%
G10 Registry generation/deletion/modification 4.0 76%
Gl1 Network connection 10.0 5%
Gl12 Execution attempt 1.0 51%

Table 3: Group Weight result

According to the result of table 3, group with higher group weight showed high malicious code
detection efficiency and can be applied in ordering of the Rule. This table result showed that the data used
in the analysis were plausible. Through correlation analysis, a formula that can be used when actually
arranging the malicious code Rules. The formula created for the detection is presented as following.

Orderingscore=FGlscore x GroupDetectionRate

However, Group Detection Rate has to be measured and calculate the Ordering Score whenever new Rule
is added. This is very inconvenient and ineffective. So through regression analysis, calculating Ordering
Score by measuring Group Detection Rate in the group is advisable. Regression analysis done with the
result from correlation analysis is in table 4}

Model Sum of Squares | df | MeanSquare F Sig.
1 | Regression 784 1 784 23.834 .0007
Residual 724 22 .033
Total 1.507 23
a. Subordination Variable: Group Detection Rate, b. Predictive value: FGI_Weight

Table 4: Analysis of variance

With the result of the analysis, a Formula for Group Detection Rate can be presented as table 3]

If Ordering Score is added in the Formula for Group Detection Rate, the result will come out as
presented in the Table [6]

If ordering score is decided according to score from the formula presented in the table [5]and table
[l FGI score is only thing that has to be calculated for Group Rule. Also, whenever Rule is added in the
Group, FGI score will be renewed. When Ordering Score is measured with the techniques that used in
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Y=-0.071X+C

Y : Group Detection Rate
X: FGI Score

C : Constant : 0.727

Table 5: The formula for Group Detection Rate

Ordering Score=—0.071X>+ 0.727X
Y : Group Detection Rate
X: FGI Score

Table 6: Applying Ordering Score in The formula for Group Detection Rate

the passage above, Group will be rearranged according to the score. The efficiency of the arrangement
will be decided with actual detection rate of the actual malicious code. This result will allow people to
get appropriate or proper arrangement so that detecting the malicious code can be most effective.

4.2 Advanced Unknown Malicious Code Detection Model

In order to detect unknown malicious codes, the malicious code detection Rules were combined and
calculated the efficiency. Also, after putting the malicious code detection Rules in to groups, again, the
efficiency was also calculated. In order to increase the efficiency of the malicious code detection, through
FGI (Focus Group Interview), weight of each group were calculated. With the data that collected from
the research until now, actual malicious code detection number and correlation were analyzed. With the
result that extracted from the research, new ordering model that could be used in effectively detecting the
unknown malicious codes and reporting the found malicious codes in the checking system is presented
in the picture 2] And we also propose a Advanced Unknown Malicious Code Detection Model 3]

Record Group
Detection Rate

Figure 2: Malicious code detection Group Ordering Process
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Figure 3: Advanced Unknown Malicious Code Detection Model

5 Conclusion

Today, use of malicious codes expanded for wider range. The examples are for monetary profit, gov-
ernmental activity, or country to country cyber war. Because of the expansion of usage, number of the
malicious code in internet or computers expanded greatly. Among created malicious codes, codes that
have not detected for at list a year in activation or incubated for months are now starting to be detected.
Because of the fact that malicious codes are dangerous to cyber world, importance of rapid detection of
malicious code became a major issue in computer security. In this research, in order to classify unknown
malicious codes rapidly, gathered malicious code sample were analyzed based on file and behavior’s



Advanced Unknown Malicious Code Detection Model Hyoungjun, Jaehee, Hyunsik and Kyungho

characteristics. With analyzed data of characteristics, relation between groups was generated. Based on
the result this research presented a way of increasing the malicious code detection by setting priority
on the aspects that has to be applied. Also, Through Advanced Unknown Malicious Code Detection
Model, in order to detect Unknown Malicious Code more rapidly, the Ordering Process of the group was
suggested. However, verification on how fast and effectively the process has been improved is still a fact
to be researched and analyzed. Through further research, the effectiveness of the process will be proved.
As time goes by, changing IT environment, advancement of malicious code production technology and
bypassing technique used on preexisting malware protection system allows endless change and transi-
tion of malicious code. As malicious codes change, its characteristics and techniques could also change.
Thus, malicious characteristics criteria have to be updated based on the presented model by adjusting the
priority to improve the usability. Also, to increase the accuracy of the model, additional analysis of other
malicious code sample in greater number is important. Not only on malicious codes, is finding relation
on normal files consideration on the further research. Moreover, research on detecting the malicious
codes that are created by infecting the normal codes will be researched. Later, the way of decreasing the
rate of finding miss detection will be calculated, analyzed and presented in the future.
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